Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NS1006). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Alonso, I., Carretero, J. C. & García-Ruano, J. L. (1994). J. Org. Chem. 59, 1499–1508.
- Arai, Y., Matsui, M., Koizumi, T. & Shiro, M. (1991). J. Org. Chem. 56, 1983–1985.
- Carreño, M. C., García-Ruano, J. L. & Urbano, A. (1992). J. Org. Chem. 57, 6870–6876.
- Carretero, J. C., García-Ruano, J. L. & Martín Cabrejas, L. M. (1995). *Tetrahedron*, **51**, 8323–8332.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fuji, K., Tanaka, K., Abe, H., Itoh, A., Node, M., Taga, T., Miwa, Y. & Shiro, M. (1994). J. Org. Chem. 59, 2211–2218.
- Molecular Structure Corporation (1992a). MSC/AFC Diffractometer Control Software. Revised edition. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1992b). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1990b). SHELXTL-Plus. Release 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. University of Göttingen, Germany.
- Takahashi, T., Kotsubo, H. & Koizumi, T. (1991). Tetrahedron Asymmetry, 2, 1035-1040.

Acta Cryst. (1996). C52, 1550-1552

$(14\alpha, 22E)$ -14-Hydroxyergosta-4,7,22-triene-3,6-dione, C₂₈H₄₀O₃

Teruyuki Honda,^{*a*} Isao Fuji,^{*a*} Noriaki Hirayama,^{*a**} Daisuke Ishikawa,^{*b*} Hirokazu Kawagishi,^{*b*} Kyung-Sik Song^{*c*} and Ich-Dong Yoo^{*d*}

^aDepartment of Biological Science and Technology, Tokai University, 317 Nishino, Numazu, Shizuoka 410-03, Japan, ^bDepartment of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422, Japan, ^cDepartment of Agricultural Chemistry, College of Agriculture, Kyungpook National University, 1370 Sankyukdong, Buk-gu, Taegu 702-701, Korea, and ^dKorea Research Institute of Bioscience and Biotechnology, Korea Institute of Science and Technology, PO Box 17, Daeduk Science Town, Daejeon, Korea

(Received 27 September 1995; accepted 2 January 1996)

Abstract

The rings A, B, C and D in the title compound adopt twist, sofa, chair and twist conformations, respectively.

The C17 side chain has an extended conformation. There is an intermolecular hydrogen bond between the O3 carbonyl and the O14 hydroxy groups.

Comment

The title compound, (I), is a natural product which has been isolated from *Phellinus igniarius*. To determine the structure unequivocally, an X-ray analysis has been undertaken.

An ORTEPII (Johnson, 1976) drawing of the title compound, together with the atomic numbering and ring-labelling scheme, is shown in Fig. 1. Ring A adopts a twist conformation with atoms C1 and C2 deviating 0.384 (2) and -0.265 (2) Å, respectively, from the least-squares planes defined by C3, C4, C5 and C10. Ring B adopts a sofa conformation with the C10 atom deviating 0.610 (2) Å from the least-squares plane defined by the other five atoms in the ring. The C ring has a chair conformation and ring D adopts a twist conformation with the C13 and C14 atoms deviating -0.509 (2) and 0.227 (2) Å, respectively, from the plane defined by the other three atoms in the ring. The alkyl chain attached to atom C17 has an extended conformation.

Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound showing the atomic numbering and ring-labelling schemes. Displacement ellipsoids are shown at the 50% probability level for non-H atoms and H atoms are shown as small spheres of arbitrary radii.

The C22=C23 bond is relatively short for a C=C double bond. The C6-C7 bond is significantly shorter than the C5-C6 bond. The exocyclic bond angles around atom C17 are highly asymmetric. Other bond lengths and angles are within normal ranges.

C6 C7

C8 C9 C10

C11

C12

C13 C14

C15

C16 C17

C18 C19

C20

There is an intermolecular hydrogen bond between the O14 hydroxy group and the O3 $(1 - x, -\frac{1}{2} + y, -z)$ carbonyl group [O14 \cdots O3 = 2.928 (2) Å, O14—H \cdots O3 = $156.9(7)^{\circ}$]. There is also a short contact of 3.092(2) Å between the C4 atom and the O3 atom at $(1 - x, -\frac{1}{2} +$ y, -1 - z), but judging from the C4—H···O3 angle of 77.5 (9)°, it cannot be classed as a hydrogen bond.

Experimental

Cl

C2

C3

C4

C5

0.3802(1)

0.4206(1)

0.48420 (9)

0.48956 (9)

().44327 (8)

0.5734 (4)

0.6030 (4)

0.5260 (4)

0.3347 (4)

0.2556 (4)

-0.2741 (2)

-0.4068(2)

-0.3698(2)

-0.2787 (2)

-0.2060(2)

3.78 (4)

3.99 (4)

3.81 (4)

3.55(4)

3.04 (3)

The crystals were grown from an ethanol solution.

	C C				C21	0.1331 (1)	0.2816 (9) 0.2758 (5)
Crystal	data				C22	0.1616(1)	0.0284 (5) 0.4789(3)
Ci julai	uunu	-			C23	0.1277(1)	-0.1214 ((0) 0.5250(3)
$C_{28}H_{40}C_{28}H_{40}C_{28}C_{28}H_{40}C_{28}C_{2$	D_3	Cu	$K\alpha$ radiation		C24	0.1209(1)	-0.1810 () 0.0674(3)
$M_r = 42$	24.62	$\lambda =$: 1.5418 A		C25	0.1400(3)	-0.402 (3	(7) $(0.7122(0))$
Monoclinic		Cel	Cell parameters from 25		C20	0.0330(1)	0.058 (1	0.7076(7)
P2		r	eflections		C28	0.0486(2)	-0.223 (1	0.8946 (5)
a = 210	900 (7) Å	θ =	30-35°		010			
u = 21.3	400(1) Å	0 =	-0.556 mm^{-1}					
b = 0.50	00 (2) A 30 (2) Å	$\mu - T =$	293 (2) K		Ta	ble 2. Sele	ected geom	etric parameters (A
c = 0.7	$51(2)^{\circ}$	Dlo	to		O3—C3		1.224 (2)	O6—C6
p = 95.	$J_{1}(2)$	F 14			014-C14		1.446 (2)	C1—C2
V = 124	14.3 (6) A°	0.5	$\times 0.3 \times 0.02$		C1-C10		1.532 (3)	C2—C3
Z = 2	2	Co	lourless		C3—C4		1.464 (3)	C4C5
$D_x = 1.13 \text{ Mg m}^{-3}$					C5—C6		1.497 (3)	C_{3}
D_m not	measured				C_{6}		1.462 (2)	C^{2}
					$C_{0} - C_{10}$		1.512(3) 1.561(2)	C9-C11
Data co	ollection				C10-C19		1.547 (3)	C11-C12
Errof N	Janius CAD 4	Turko P	P = 0.054		C12-C13		1.525 (3)	C13-C14
Enrai-r	Nomus CAD-4		= 0.034		C13-C17		1.552 (2)	C13—C18
diffra	actometer	0 _{ma}	$\theta_{\rm max} = 74.9$		C14-C15		1.519 (3)	C15—C16
$\omega/2\theta$ sc	ans	h =	$h = 0 \rightarrow 27$		C16—C17		1.541 (3)	C17—C20
Absorp	tion correction:	: k =	$k = -7 \rightarrow 0$		C20C21		1.525 (5)	C20—C22
none		<i>l</i> =	$-11 \rightarrow 11$		C22—C23		1.293 (4)	C23-C24
2875 m	easured reflect	ions 3 s	tandard reflect	ions	C2-C1-	C10	113.7 (2)	C11_C12_C13
2832 in	dependent refle	ections 1	frequency: 60 min		C1_C2_	C3	111.3 (2)	$C_{12} - C_{13} - C_{14}$
2581 ol	2581 observed reflections		intensity decay: 2.5%		03 - 03 - 03	C2	122.8 (2)	C12 - C13 - C17
[F >	$[F > 3\sigma(F)]$		5		03-03-	C4 C4	121.2(2) 115.9(2)	C14-C13-C17
[1 >	50(1)]				C3-C4-	C5	123.1 (2)	C14-C13-C18
Pafinan	nant				C4C5	C6	118.2 (2)	C17-C13-C18
Кејшен	10711			? 3	C4—C5—	C10	123.8 (2)	O14C14C8
Refinen	nent on F	Δ_{ℓ}	$p_{max} = 0.23 \ e \ A$	\	C6C5	C10	117.9(1)	014-C14-C13
R = 0.0)39	Δ_{ℓ}	$\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm A}^{-3}$		06—C6—	-C5	121.9 (2)	014 - 014 - 013
wR = 0	.047	Ex	Extinction correction:		06	-C7	121.5 (2)	$C_8 = C_{14} = C_{15}$
S = 2.3	0		$ F_{\text{calc}} /(1 + gI_{\text{calc}}) $	uc)	C5-C6-	C7 C8	110.3(2) 122.2(2)	C_{13} C_{14} C_{15}
2581 re	effections	Ex	tinction coeffic	cient:	C7—C8—	C9	122.5 (2)	C14-C15-C16
436 par	rameters		$e = 1.155 \times 10^{10}$	0^{-5}	C7—C8—	-C14	121.5 (2)	C15-C16-C17
U atom	s: see helow	At	omic scattering	factors	C9—C8—	-C14	115.2 (1)	C13—C17—C16
11 atom	$-\frac{2}{5}$	7 11	from Internatio	onal Tables	C8—C9—	-C10	112.4 (1)	C13—C17—C20
W = 1/c	$\mathcal{F}(\mathbf{r})$		from Manuel Constalle angelu		C8-C9-	CII	113.5 (2)	C10 - C17 - C20
$(\Delta/\sigma)_{\rm r}$	$(\Delta/\sigma)_{\rm max} = 0.11$		for X-ray Crystallography		C10C9-		111.8(1) 110.7(2)	$C_{17} = C_{20} = C_{21}$
			(1974, Vol. IV)	CI_CI0-	 	10.7(2) 108.7(1)	$C_{1} = C_{2} = C_{2}$
							110.5 (2)	C20-C22-C23
T-1-1-	1 European		udiu atao and	aquinalant	C5-C10-		108.9 (1)	C22-C23-C24
Table	Table 1. Fractional atomic coordinates and equivalent				C5-C10-	C19	105.9 (2)	C9-C11-C12
	isotropic di	splacement	parameters (A	4 ²)	C9—C10-	C19	112.2(1)	
$B_{-} = (4/3) \sum \sum \beta \cdot \beta \cdot \beta \cdot \beta$					C1_C2_	-C3C4	38.2 (3)	C9-C8-C14-C13
	De	$q = (7/3) \square [\square]$		D	C2-C1-	-C10C5	42.6 (2)	
	<i>x</i>	у	2	B_{eq}	C3-C2-	$-C_1 - C_1 U$	-34.0(3) -86(3)	C13-C14-C13-C10
03	0.52949 (7)	0.614	-0.4137(2)	5.04 (4) 4 96 (4)	CS-C0-	 	-6.0(3) 463(2)	C15-C14-C13-C17
014	0.49875(7)	0.2720 (3)	0.2705(1)	3.69 (3)	C7_C6_	-C5-C10	-19.5 (2)	C17-C20-C22-C23
~ • •			,					

C8-C9-C11-C12

C1-C10-C5-C4

C2-C3-C4-C5

C3-C4-C5-C10

C5-C10-C9-C8

0.45418 (8)	0.0583 (4)	-0.1172 (2)	3.38 (4)
0.40956 (9)	0.0083 (4)	-0.0074(2)	3.24 (3)
0.36576 (7)	0.1436(3)	0.0273 (2)	2.83 (3)
0.35542 (8)	0.3504 (4)	-0.0536(2)	2.99 (3)
0.37955 (8)	0.3479 (4)	-0.2143(2)	2.98 (3)
0.2890(1)	0.4287 (4)	-0.0548(2)	3.99 (4)
0.2565(1)	0.3948 (4)	0.0902(2)	3.85 (4)
0.26175 (8)	0.1667 (4)	0.1415 (2)	3.23 (3)
0.33057 (8)	0.1156 (4)	0.1673 (2)	3.05 (3)
0.33190 (9)	-0.0963 (4)	0.2457 (2)	3.72 (4)
0.27590 (9)	-0.0868(4)	0.3439 (2)	3.88 (4)
0.23956 (9)	0.1131 (4)	0.2987 (2)	3.60 (4)
0.2321 (1)	0.0174 (5)	0.0229 (2)	4.05 (4)
0.3406(1)	0.2050 (4)	-0.3225 (2)	3.74 (4)
0.1706(1)	().0862 (5)	0.3179 (3)	4.91 (5)
0.1331(1)	0.2816 (9)	0.2758 (5)	8.0(1)
0.1616(1)	0.0284 (5)	0.4789 (3)	5.08 (5)
0.1277 (1)	-0.1214 (6)	0.5256(3)	5.66 (6)
0.1209(1)	-0.1810 (7)	0.6874 (3)	6.14 (7)
0.1466 (3)	-0.402(1)	0.7122 (6)	11.5 (2)
0.0550(1)	-0.1589 (7)	0.7332 (3)	6.85 (8)
0.0312(3)	0.058(1)	0.7076(7)	10.8 (2)
0.0486 (2)	-0.223(1)	0.8946 (5)	10.8 (1)

, °)

C22-C23-C24-C26

C9-C11-C12-C13

C11-C12-C13-C14 C13-C17-C16-C15

C14-C15-C16-C17

39.3 (3)

-17.4 (2)

-13.6(3)

-47.1(2)

2.7 (3)

119.0 (4)

-51.7 (3)

59.6 (2)

19.7 (2)

8.8 (2)

1.214(2) 1.534 (3) 1.495 (3) 1.336(3) 1.511 (3) 1.340(3) 1.519(2) 1.538 (3) 1.530(3) 1.545 (3) 1.539 (3) 1.553 (3) 1.540 (3) 1.509 (3) 1.511 (4) 111.0 (2) 107.4 (2) 117.3 (2) 111.2(2)100.1(1)109.9 (2) 110.2 (2) 104.6(1) 106.4 (1) 108.8(1) 113.1(1) 119.1 (2) 104.2(1) 103.4(2)107.3 (2) 103.4 (2) 119.3 (2) 111.9 (2) 113.5 (2) 108.6(2) 109.5 (2) 126.7 (2) 125.9 (3) 115.9 (2) 49.8 (2) -37.9(2)-34.3 (2) -39.7 (2) 46.5 (2) -132.5(3)

C6-C7-C8-C9	5.5 (3)	C16-C17-C20-C22	57.4 (3)
C7-C8-C9-C10	23.9 (2)	C20-C22-C23-C24	178.0 (3)
C8-C14-C13-C12	-59.7(2)		

All non-H atoms were located by direct methods. All H atoms were found from difference Fourier maps. All non-H atoms were refined anisotropically and H atoms isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: MITHRIL (Gilmore, 1984). Program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1992). Molecular graphics: ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KH1087). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gilmore, G. J. (1984). J. Appl. Cryst. 17, 42-46.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Acta Cryst. (1996). C52, 1552-1554

(2'S,3'S,4'R)-5'-O-Benzoyl-3'-deoxy-3'βdiethylphosphono-2'-O-tert-butyldimethylsilyluridine

WENKUI LAN MCELDOON, DALE C. SWENSON AND DAVID F. WIEMER

Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA. E-mail: david-wiemer@uiowa.edu

(Received 1 May 1995; accepted 27 October 1995)

Abstract

3'-Hydroxy-3'-diethylphosphononucleosides readily undergo radical deoxygenation under modified Barton conditions to give two diastereomers of the parent diethyl phosphonate. However, the stereochemistry of the diastereomers is difficult to establish by spectral means. When the major product of one such reaction was obtained in crystalline form, a single crystal diffraction analysis was conducted on that diastereomer, the title compound, $C_{26}H_{39}N_2O_9PSi$.

Comment

A modified Barton deoxygenation protocol suitable for deoxygenation of tertiary alcohols was reported by Dolan & MacMillan in 1985, but there have been few applications of this methodology in carbohydrate or nucleoside systems (Matsusda, Takenuki, Sasaki & Ueda, 1991; Kakefuda, Yoshimura, Sasaki & Matsuda, 1993; Serra, Dewynter, Montero & Imbach, 1994). In all previous cases, the stereochemistry of the products was assigned by analysis of the NMR spectra. After deoxygenation of 5'-O-benzoyl-3' α -diethylphosphono-3' β -hydroxy-2'-O-tert-butyldimethylsilyluridine *via* this procedure (McEldoon & Wiemer, 1995), the 3'stereochemistry of the title product, (I), was established by a single-crystal diffraction analysis.

The diffraction analysis revealed an intermolecular hydrogen bond between the H atom of N3 and the phosphoryl O atom $[N3 \cdots O5^i 2.924 (7), H3 \cdots O5^i 2.17 (5) \text{ Å}, N3 - H3 \cdots O5^i 176 (5)^\circ$; symmetry code: (i) x - 1/2, -y + 1/2, -z + 1]. It also established that the ribose ring adopts an O4',C4' half-chair conformation. The conformation about the glycosidic bond is *anti* $[O4' - C1 - N1 - C2 = 242.7 (5)^\circ]$.

Fig. 1. An ORTEPII (Johnson, 1976) drawing of the title compound with the atomic numbering scheme. Displacement ellipsoids are plotted at the 35% probability level.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved